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COMMENT 

Diffusion coefficient for tvo- and three-dimensional disordered 
lattices 

Robert Kariotis 
Institute for Pure and Applied Physical Sciences, University of California, San Diego, La 
Jolla, CA 92093, USA 

Received 19 March 1984, in final form 30 May 84 

Abstract. Using the generating function formalism, the frequency dependent diffusion 
coefficient is obtained for disordered lattices in two and three dimensions. Values for the 
lowest order constant and the first correction term are found as a power series in the 
cumulants of the inverse transition rates. 

Calculation of the statistical properties of static, disordered lattices, described by the 
master equation 

has recently received attention from a wide variety of methods. For example, the 
motion of an ion in a crystal can be studied using the random hopping model which 
is given by 

where Pl( t )  is the probability that the ion is located at lattice site I in time t and Wll+r 
is the transition rate from site I + r to site I. For this kind of problem, it is assumed 
that the transition rates are symmetric, W,, = Wml, and that only nearest-neighbour 
hopping is present. The transition rates are treated as random variables, with distribu- 
tion p (  W), when the motion of the ion is in the presence of static disorder in the 
lattice (see Alexander et al (1981) for a review). In this comment we present a means 
of approaching the random barrier problem which is readily generalised to arbitrary 
dimensions, unlike previous methods which are limited to one-dimensional systems. 
Following the designation of Alexander et al, three types of disorder are distinguished: 

Case A, (W-" )  finite, 

Case B, P (  W) = 1, o< w <  1, 

Case C, p(  W) = ( 1  -a) w-" O < a < l ,  o <  w<1. 

In this comment we consider only case A. 

0105-4470/84/ 142889 +05$02.25 @ 1984 The Institute of Physics 2889 



2890 R Kariotis 

Our starting point is similar to that used in an earlier publication by Stephen and 
Kariotis (1982), in that we make use of the replicated generating function 

Z = fl 1 dpl ( e x p [ - h f  -4 W I I + , ( ~ I  - P I + ~ ) ~ I ) .  (2) 
I ,  r 

In this expression, Cl is the frequency variable, Wll+r is the transition rate, and the 
field variables pI are n-component vectors which are used to represent the probability 
variables, PI. The angular brackets denote averaging over the random variables WIl+,. 
Equation ( 2 )  is readily generalised to higher dimensions with the addition of extra 
indices. The Green function, or propagator, in coordinate space is 

G( M, C l )  = n dp,  fp2( m)(e-"). (3) 
1 1  

n represents the number of replicated copies of the system; at the end of the calculation, 
the n + 0 limit is taken. 2 simply represents the exponent given in equation (2). In 
the following calcu;ations, we use a finite lattice, N sites in all. When n += 0 it is found 
that no terms of order N remain, unlike the problems that arise when the replica trick 
is used to calculate thermodynamic quantities. We conclude from this that the n += 0 
limit will not create difficulties for finite systems. 

The propagator, as a function of wave number and frequency is 

G(k, C l )  = [Cl +D(R, l)]-', 

and the generalised diffusion coefficient may be expressed in the form 

D(R, k )  = D2(R)kZ + D , ( R ) k 4 + .  . . . 
It is our intent in this paper to investigate the frequency dependence of D2. The 
transformation from coordinate to wave number representation is obtained by perform- 
ing the integrals in equation (3) in terms of new field variables 

1 
$ ( k )  =-zexp( ik .  / ) V I .  

JN I 

Using the method which will be described in the following paragraphs, we find the 
small frequency behaviour of D, to be 

d = l ,  &(Cl)  = Do +D,&, (40) 

where 

In d = 1, the result reproduces those of Machta (1981) and Zwaiizig (1982). As will 
be discussed shortly, there are corrections to these expressions which are higher order 
in powers of the fluctuations, and in powers of the frequency variable. To begin, we 
write the Green function in the form 
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where it is assumed that we look for all contributions of order n. This averaging is 
taken with respect to the function f l$(q) ]  which is obtained from the Fourier 
transformed generating function 

r 

Since we claim that the following manipulations are valid in arbitrary dimensions, the 
site index 1 must contain d labels. From here on, consider a particular bond, denoted 
W, = W,,+” which is rewritten 

@(A,)  = (exp[-fWAfl) = d l l  (exp[-%l:/ W )  + i l l  * AI]), (7) 1 
where 

A /  = PI - ( P I + ?  

The integration varible lf is also replicated so that 

u = l  

Lower case n denotes n replicas, lower case greek letters are replica sums. In addition, 
there is a normalisation factor in front of the integral proportional to ( W,)””; this can 
be neglected in the n +O limit. Taking the cumulant average of the Gaussian we find 

@ ( A I )  = dll  exp(illAl) exp[-i( 1/D,)l:+ac21t-~c31P+. . .I 5 
where 

Do=( l /w)- ’ ,  

c3 = ( 1 / 3 ! ) [ ( 1 / ~ ~ )  -3(1/  w2)(1/ w) +2(1/w)3] 

c2 = [f( I /  w2)- (  1 /  w)’] 

and 
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In order to obtain the low-frequency correction to the diffusion coefficient, we need 
to keep only the term linear in c2. All higher cumulants and products of cumulants 
will contribute corrections only to terms beyond the first-order result. 

The effective ‘Hamiltonian’ that we will use appears in the expression 

The generating function is now translationally invariant and may be expressed in terms 
of the Fourier variables; the Green function is 

where 

4 

. .. 

Also, we have made use of the following abbreviations 

d 

j = l  

In all of these expressions, the lattice spacing has been set equal to one. 
Before continuing, several remarks are required. First, the sign of the ‘interaction’ 

term is wrong for doing perturbation theory. This is normally explained by pointing 
out that the higher cumulants act to regulate the large +( q )  behaviour of the exponent. 
Even so, technically speaking, perturbation theory is not valid, however, a large-order 
type analysis of this series is not of interest at the moment; such considerations will 
require attention at a later date. 

Second, had we taken the cumulant series with respect to W rather than W-’, 
everything would follow through as it has in the above manipulations. However, the 
A: contribution to 2, would be missing and without this term, the cancellation of the 
a-independent part of A: would not take place. It may be possible to associate XI 
with a diagrammatic formalism, say, treating the C, cumulant as a vertex interaction 
of order 2m. This has already been accomplished by Denteneer and Ernst (1984) for 
the one-dimensional case. In the above approach, however, the presence of these 
extraneous terms generated by the choice of ( W-”) as the expansion coefficients makes 
the diagrammatic formalism less attractive. 
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With these remarks out of the way, the calculation is readily completed by consider- 
ing the required integrals in perturbation theory 

= Go( k, fi ) + 2 c2 Di GI% k [ D  ( k ) / Dol Qd (a 0 ( N n  

where 

G,l(k, 0) = 0 + D ( k ) ,  

which for small wave number is 

Gi '(  k, fi) = R + Dok2, 

and the frequency-dependent correction term contains the function 

w E R / 4 D o .  

Qd(Q)  can be evaluated exactly for two and three dimensions, however, for the sake 
of explicit expressions, we used the small-q approximation in d = 2  and 3 .  These 
results appear in equation ( 4 ) .  Denteneer and Ernst (1984) give explicit forms for Qd. 

In summary, we have presented a method for calculating the frequenty dependent 
diffusion coefficient in terms of the cumulants of the inverse transition rates. The 
method employs the replica trick to put the problem into the form of a classical field 
theory. In one dimension, the coefficients can be obtained exactly. In higher 
dimensions, the coefficients can be obtained as power series in the cumulants of the 
disorder. 

This work was supported by the National Science Foundation under Grant DMR82- 
12570. 
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